
Belief Structures within
Fractional Semantics:
an overview

1.1 Introduction

Fractional Semantics, initially introduced in [17], serves as a pow-
erful tool for discerning the number of proper axioms within a
proposition relative to the total number of axioms. This method
underwent refinement for modal logic [19] and expanded into the
domain of beliefs in [3] and applied to the Lottery Paradox in [2].
The study demonstrated the instrumental role of Fractional Seman-
tics in resolving the Lottery Paradox.

This work has two main objectives: firstly, to present in a re-
fined way GS4B, firstly presented in [3]—the Fractional Seman-
tics System that incorporates beliefs; secondly, to introduce a nu-
anced categorization of beliefs. In [3], all beliefs are treated as
true, akin to tautologies. However, this poses a philosophical chal-
lenge, as not every proposition we believe aligns with the certainty
of a tautology. To address this, we utilize Hyperreal numbers,
signifying that a belief holds a value not of 1, but infinitesimally
lower—specifically, 1−δ, where δ represents an infinitesimal value
smaller than every real number.

This approach draws inspiration from Hansson [9, 10], who
used hyperreal numbers to differentiate between Full Beliefs (as-
signed a value of 1) and beliefs open to revision in the presence
of evidence, termed Revisable Beliefs. However, our aim is dif-
ferent: we seek a system capable of tracking not only the count of
Full Beliefs but also beliefs considered true even if subject to re-
vision, differenciating between them thanks to hyperreal numbers.
Fractional Semantics enables us to perform derivations and deter-
mine the composition of the combination between tautologies, Full
Beliefs, and Revisable Beliefs.

The paper is structured as follows: in the first section, we briefly
present Fractional Semantics, referring to [2, 3, 17–19] for more
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examples and proofs; in the second section, we present proofs for
theorems from [3]; and in the last section, we introduce a distinc-
tion between Full Beliefs and Revisable Beliefs within the frame-
work of fractional semantics.

1.2 Fractional Semantics

Fractional semantics is a multi-valued approach governed by pure
proof-theoretic considerations firstly introduced in [17], assigning
truth values as rational numbers in the closed interval [0,1] break-
ing the symmetry between tautologies and contradictions, allow-
ing values other than 0 for non-logical axioms, i.e., contingent. It
measures the proposition’s proximity to being a tautology or a con-
tradiction.

To enable fractional interpretation, a decidable logic L is re-
quired, displayed in a sequent system S meeting three conditions:
bilateralism, invertibility, and stability.

Bilateralism : S, as a bilateral system, generates S-derivations
for any well formed formula A of L : if A is valid, its S-
derivation will be an actual proof of A; if A is invalid, its S-
derivation will provide a formal refutation of A, i.e., a proof
of its unprovability.

Invertibility : each logical rule of S is invertible, meaning that the
provability of its conclusion implies the provability of (each
one of) its premise(s). This means that there is an algorithm
to decompose uniquely a sequent into an equivalent formula
in conjunctive normal form.

Stability : two analytic S-proofs with the same end-sequent share
the same multi-set of top-sequents.

Fractional semantics is obtained by focusing on the axiomatic
structure of proofs expressed in Kleene’s one-side sequent system
GS4 [13, 22]. The system is as following:

(ax.)
⊢ Γ, p, p

⊢ Γ, p, q
(∨)

⊢ Γ, p ∨ q

⊢ Γ, p ⊢ Γ, q
(∧)

⊢ Γ, p ∧ q

GS4 is a one-sided sequent where structural properties are absorbed
into the calculus, Γ and ∆ are multisets of formulas, and p, q, . . .
are atomic formulas. As usual, ∧ indicates the conjunction and
∨ the disjunction. There is not a rule governing negation as it is



3

inductively defined by different atomic formulas p and p, where
p indicates the negation of p. Sequents can be decomposed into
initial sequents that are allowed to contain only atomic formulas.

The interpretation of a formula is the result of the ratio between
the number of identity top-sequents (∆, p, p) out of the total num-
ber of top-sequents occurring in any of its proofs. Weakening and
contraction are dropped while cut rule has the form:

⊢ Γ, p ⊢ p,∆
(cut)

⊢ Γ,∆

In order to give a fractional interpretation a counterpart is needed,
namely GS4, that is the GS4 calculus maximally extended:

Definition 1.1 (GS4). The calculus GS4 is obtained from GS4
that is able to prove any sequent and it satisfies cut-elimination à
la Gentzen if its axioms introduce only clauses [17], i.e., a sequent
which consists solely of atomic formulae [1].

Definition 1.2 (Top-sequents axioms).

top1(π) : denotes the multiset of all and only π’s top-sequents
introduced by an identity axiom, i.e., those those sequents
directly introduced as instances of the axiom rules.;

top0(π) : denotes the multiset of all and only π’s top-sequents
introduced by a complementary axiom, in other words, those
axioms that are not tautological.

Any formula A can be interpreted as the ratio between the num-
ber of identity top-sequents (sequents introduced by the standard
axiom) out of the total number of top-sequents.

JAK =
top1(π)

top1(π) + top0(π)

Definition 1.3 (Top-sequents). Top-sequents represent the num-
ber of the leaves of the proof as defined in Definition 1.2 and JΓK
denotes the value of the formula ∨Γ where only ∨−applications
appear.

top1(π) : let’s call this m

top0(π) : let’s call this n

J∨ΓK is m
n
∈ [0, 1]
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From this definition it is possible to give general rules with deco-
rated sequents. These decorated sequents are able to keep track of
the fractional value along the proof.

(ax.)

1

1
Γ, p, p

(ax.)

1

0
∆

n
m

Γ, A,B
(∨)

n
m

Γ, A ∨B

n1

m1
Γ, A n2

m2
Γ, B

(∧)

n1+n2

m1+m2
Γ, A ∧B

Example 1.4. Let’s consider an example with the turnstile deco-
rated:

(ax.)

1

0
p, q

(∨)

1

0
p ∨ q

(ax.)

1

1
p, p

(∨)

1

1
p ∨ p

(∧)

2

1
(p ∨ q) ∧ (p ∨ p)

(ax.)

1

0
r

(ax.)

1

0
t

(∧)

2

0
(r ∧ t)

(∧)

4

1
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

Here, it is possible to observe that for each step of the proof,
we can directly read the fractional semantics value on the turnstile.

1.2.1 Framing beliefs into Fractional Semantics for
classical logic

From Fractional Semantics we can do a different framework where
beliefs are incorporated into fractional semantics for classical logic
by introducing a set of axioms denoted as B. These axioms, rep-
resenting the true beliefs of an agent, are treated as tautologies.
The underlying philosophy is that an agent naturally considers their
own beliefs to be true.

Beliefs in this context are treated as deductively closed, imply-
ing that any deduction made using these true beliefs is also con-
sidered true. This reflects the idea of an agent being deductively
ideal. Integrating such beliefs into fractional semantics can lead
to obtaining values greater than those typically permitted by frac-
tional semantics alone.

The inspiration for this expansion comes from one of Makin-
son’s methods, namely pivotal-assumption consequence, used to
bridge the gap between classical and non-monotonic logic by adding
background assumptions. However, the fractional semantics ap-
proach with added beliefs differs from pivotal-assumption conse-
quence in two key aspects. Firstly, while Makinson used a clas-
sical two-valued semantics, fractional semantics operates within a
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multi-valued interpretation. Secondly, pivotal-assumption conse-
quence assigns the value 0 if any axiom is not a proper axiom or
belief, whereas fractional semantics can assign values greater than
0 when a top sequent is a tautology or a belief.

To incorporate beliefs into the system, they must be atomic;
otherwise, they need to be decomposed. The definitions of GS4B
and ⊢B are provided as follows:

Definition 1.5 (GS4B). Let B = b1, . . . , bn a set of non tautologi-
cal, non contradictory and of arbitrary complexity formulas; let B
be the set of sequents obtained from the decomposition of formu-
las in B and closed under cut; let GS4 be as defined earlier, then
GS4B is the system where everything that is derived from B and
from GS4 is true.

Definition 1.6 (⊢B). If ⊢ is the closure relation of classical logic,
then ⊢B is defined as the closure relation of GS4B.

The system is not Post-complete because structurality and con-
sistency are mutually exclusive properties in the axiomatic exten-
sion of classical logic: adding new axioms to the system is not pos-
sible to mantain structurality, i.e., substitution is dropped. Makin-
son highlighted this in [15] without explicitly citing Post, even
though the underlying reason is identical.

Theorem 1.7. There is no supra-classical closure relation in the
same language as classical ⊢ that is closed under substitution,
except for ⊢ itself and the total relation i.e. the relation that relates
every possible premises to every possible conclusion.

and this applies also to this system.
Now, let’s delve deeper into formalizing the system by defining

the top sequent incorporating added beliefs.

Definition 1.8. topb(π) : represents the multiset of all and only
top sequents of π introduced by a belief.

The reason for introducing this new type of top sequent stems from
our desire, particularly in this context, to treat beliefs on par with
identity axioms. This is because an agent invariably regards her
own beliefs as true. The updated method for calculating the value
of a sequent is:

JAKB =
topb(π) + top1(π)

topb(π) + top1(π) + top0(π)

It is also possible to see the same tree with multi valued system,
adding a new rule:

(bi)

1

1

B
B
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Example 1.9. For example let’s consider this example where B =
p, q

(b1)

1

1

B
p, q

(∨)

1

1

B
p ∨ q

(ax.)

1

1

B
p, p

(∨)

1

1

B
p ∨ p

(∧)

2

2

B
(p ∨ q) ∧ (p ∨ p)

(ax.)

1

0

B
r

(ax.)

1

0

B
t

(∧)

2

0

B
(r ∧ t)

(∧)

4

2

B
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

It is worth noting that if this sequent was considered in clas-
sical logic, any valuation would assign either the value 0 or 1.
Something similar happens in Makinson pivotal assumption con-
sequence, also if the belief set is the same that we have defined
earlier, because a two valued logic is there considered.

1.3 Strong cut elimination

The last section pointed out that the agent is an ideal one and that
they are aware of every deduction between beliefs. This means that
the belief set is deductively closed: nothing that was not already in
the set can be derived. In order to have a deductively closed belief
set it is important that every combination of sentences, when it is
possible, must be closed under cut and the new sentences obtained
in this way will be added to the belief set.

In order to eliminate cut from GS4B the method is taken from
[18], but it is simplified because of the nature of one-sided se-
quents. The method is the following:

1. let’s consider a propositional formula bi ∈ B (B being the
set of beliefs) and decompose it using the invertible rules;

2. the procedures gives identity and non-logical sequents. Re-
move the identity ones;

3. let’s contract every sequent thus obtained;

4. let’s consider two sequents Γ, p and ∆, p and add the sequent
Γ,∆ to the set of beliefs and let’s contract the set thus ob-
tained;

5. the procedure terminates;

6. finally, take the set closed under weakening.
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To emphasize the importance of accounting for the fractional
value of a formula incorporating beliefs, it is necessary to con-
sider, as initial sequents, not only those obtained directly but also
sequents derived via closure under cut. Let’s illustrate this with the
following example:

Example 1.10. It is easy to show why the step 4. is so important.
Suppose that an agent has a new belief: A = (p∧(t∨q))∨(t∧(t∨
q)). The first thing to do in order to add that belief is to transform
A in a conjunctive form: it is easy to show that it is equivalent to
⊢ (p ∨ t) ∧ (t ∨ q) ∧ (t ∨ t ∨ q) ∧ (t ∨ q). Let’s decompose it in a
set of clauses: ⊢ p, t, ⊢ t, q, ⊢ t, t, q, ⊢ t, q and remove one of the
copies of ⊢ t, q and the axiom ⊢ t, t, q. By the method presented
earlier the agent has to add (p ∨ t) and (t ∨ q) to the system, but
these beliefs are not cut free. To let them be cut free, it is necessary
to close them under the cut.

⊢ p, t ⊢ t, q
(cut)

⊢ p, q

From the last point of the method presented earlier, it is needed
to add not only ⊢ p, t and ⊢ t, q, but also ⊢ p, q. Let’s see why:
J(p ∨ t) ∧ (t ∨ q)K has value 1 if B = {(p, t); (t, q)}

1

1

B
p, t

(∨)

1

1

B
p ∨ t

1

1

B
t, q

(∨)

1

1

B
t ∨ q

(∧)

2

2

B
(p ∨ t) ∧ (t ∨ q)

As it was showed, the cut is really important for a complete
set of beliefs, but it is also necessary to see how the cut can be
eliminated from the calculus.

1.3.1 Elimination of cut
The elimination of cut in presence of proper axioms was firstly pro-
posed by Girard [6], as noted by Avron [1], upgrading the Gentzen’s
standard cut elimination algorithm. The procedure here proposed,
i.e., the decomposition of the formula, the add to the system and
the cut of the formula to obtain all the derivations, owes a lot to the
one presented in [18].

In the article, in fact, is proved that, for any cluster of extra-
logical assumptions, there exists exactly one axiomatic extension
of classical propositional logic that admits cut elimination. We
can prove that Fractional value does not decrease in GS4B with
relation to the addition of formulas:
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Theorem 1.11. For any multiset of atomic formulas ⊢B Γ and
⊢B ∆, J

∨
Γ ∨

∨
∆KB ≥ J

∨
ΓKB.

Proof. To prove this is sufficient to consider a transformation of
⊢B. In fact if B = b1, . . . bn, then ⊢B Γ is equal to ⊢ Γ, b1, . . . bn,
changing the kind of turnstile from the one introduced here to the
classical one, as pointed out in [15]1. Intuitively this is due to the
fact that the sequent is true iff there is a disjunction between a letter
and its negation (for example bi and bi). From this fact it is possible
to consider four cases:

• if JΓKB = J∆KB = 1, than obviously JΓ ∨∆KB = 1 as well;

• if JΓKB = JΓ, b1, . . . , bnK = 1 and J∆KB = 0, then JΓ ∨
∆KB = 1 as well;

• if J∆KB = J∆, b1, . . . , bnK = 1 and JΓKB = 0, then JΓ ∨
∆KB ≥ JΓKB, whatever value assumes JΓKB;

• if JΓKB = J∆KB = 0, then JΓ ∨∆KB ≥ JΓKB.

It is possible to generalize this result for any context:

Theorem 1.12. For any context Γ and a formula A, such that A is
not contradictory with the set B, J

∨
Γ ∨ AKB ≥ JΓKB.

Proof. Let’s prove it by induction on the complexity of the formula
A.

Base case: Let’s consider A atomic, then we have two cases:

A ∈ B: if A ∈ B, then J
∨

Γ, AKB = 1 and JΓ, AKB ≥ JΓKB
A ̸∈ B: if A ̸∈ B, then if J

∨
ΓKB = 1, there is an atomic

formula in Γ that is in the belief set, so also J
∨
Γ, AKB =

1. If J
∨

ΓKB = 0, b1, . . . , bn ̸∈ Γ and then J
∨
Γ ∨

AKB = 0

Inductive step: Let’s consider two cases:

A ≡ p ∧ q: by inductive hypothesis J
∨
Γ∨pKB ≥ JΓKB and

J
∨

Γ∨qKB ≥ JΓKB. If at least one between J
∨
Γ∨pKB

and J
∨

Γ ∨ qKB is equal to 0, then J
∨
ΓKB = 0 for

inductive hypothesis and then J
∨
Γ∨(p∧q)KB ≥ JΓKB.

The only remaining case is when J
∨
Γ ∨ pKB = 1 and

J
∨

Γ ∨ qKB = 1:

1In the text the two sided version of this transformation was used, so ⊢B Γ
becomes b1, . . . , bn ⊢ Γ, but here because of the choice to use GS4 as main
system, it is used the one-sided classically equivalent version ⊢ Γ, b1, . . . , bn.
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1

1

B
Γ, p

(∨)

1

1

B

∨
Γ ∨ p

1

1

B
Γ, q

(∨)

1

1

B

∨
Γ ∨ q

(∧)

2

2

B

∨
Γ ∨ (p ∧ q)

Thus J
∨

Γ ∨ (p ∧ q)KB ≥ JΓKB.

A ≡ p ∨ q: by theorem 1.11.

Theorem 1.13 (Strong cut elimination of GS4B). The cut rule is
redundant when added to GS4B.

Proof. Girard was the first to notice that a different procedure could
preserve cut elimination even in the presence of axioms [6, 16].
The proof is as usual with double induction, the alorithm is similar
to the one presented in [20].

The set of beliefs can be “completed” through cut or without
that. This means that GS4B is a cut-free system, because it is an
axiomatic extension of classical logic. By the way, the use of cut
can alter the fractional semantics value as shown in [17]. Thanks
to theorem 1.13 the algorithm presented in section 1.3 can be trans-
formed in an algorithm without the presence of cut. As a corollary
of the strong cut elimination it can be obtained:

Theorem 1.14 (Uniqueness of axiomatization in GS4B). For any
cluster of axioms in the set of beliefs B the axiomatization is unique.

Proof. See [18].

1.4 Full Beliefs and Revisable Beliefs

The formal model of beliefs introduced since here is a dichoto-
mous system, an all-or-nothing structure, where a belief is either
fully accepted or not at all. We have previously asserted that be-
liefs, within this framework, are deemed true as well as tautologies.
However, we can refine this categorization further. In this section,
we employ hyperreal numbers, as Hansson did [10], to distinguish
between tautologies and beliefs, or more precisely, between Full
Beliefs and Revisable Beliefs. These designations are arbitrary and
simply signify that a Full Belief is one whose value is immutable,
while a Revisable Belief is one that, though currently held as true,
remains subject to revision in light of new evidence.

The reason why hyperreal numbers are interesting in this kind
of settlement is twofold: on one hand, it is easy to distinguish
between Revisable and Full Beliefs; on the other hand, hyperreal
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numbers do not alter the fractional final value, thereby validating
all the proofs that we have made for GS4B also for this settlement.
In fact, 1 − δ in Q is equal to 1, creating a bridge between GS4B
and hyperreal numbers.

A Full Belief is characterized as a belief that remains impervi-
ous to revision under any circumstances; it is an assertion that an
agent is unwilling to discard in any situation. Conversely, an agent
may hold beliefs that are fully accepted, yet subject to revision in
light of new evidence; these are termed Revisable Beliefs, in the
sense that they are beliefs that, in presence of new evidences, can
be revised, while a tautology can be regarded as a Full Belief, be-
cause it can’t be revised also in presence of new evidences. For
the sake of enhancing the generality of the system, we extend this
classification beyond tautologies alone. To accomplish this, we
adorn the turnstile with the expression 1− δ, where δ represents an
infinitesimal quantity:

(bj)

1

1−δ

B
bj

This notation implies that the belief bj is one of the agent’s be-
liefs, subject to possible revision in a subsequent moment. The
symbol δ functions as a label derived during the proof, serving to
keep track of the use of one or more propositions that may be re-
vised in the presence of new evidences. This new notation doesn’t
change the proves of Cut and Weakening Admissibility in function
[10]: st(1− δ) = 1, because of the fact that for the proofs we can
use only the standard part of the hyperreal number. This means that
from the point of view of proof theory nothing changed, but some-
thing changed in the expressivness of Fractional Semantics. The
rule of conjunction still decorate the sequents in the same way:

n1

m1
Γ, A n2

m2
Γ, B

(∧)

n1+n2

m1+m2
Γ, A ∧B

the only difference is that sometimes we will have to add also in-
finitesimal numbers, for example:

1

1−δ

B
p 1

1−γ

B
q

(∧)

2

2−(δ+γ)

B
p ∧ q

Also, if the final value seems strange, it indicates that, accord-
ing to Fractional Semantics, the value remains 1. This implies that
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the derivation is solely based on true assumptions at the moment
of the derivation. On the other hand, we have two infinitesimals,
suggesting that two of the assumptions are beliefs that can be dis-
carded in the presence of new evidence. None of the beliefs used
are Full Beliefs, so p ∧ q is a proposition with a value of 1, thanks
to the set B. The meaning of the value 2 − (δ + γ) is that two of
the leaves of the tree are beliefs that are possible to revise in the
presence of new information. This means that, after revision, the
fractional value could also assume a value of 0.5 or maybe also 0
if both of the beliefs once revised result as false. Our idea is that
this value is a way to keep track of how many beliefs are not Full
beliefs or tautologies into the derivation.

1.4.1 Decomposition of a Revisable Belief
To decompose a belief, the rules remain the same as before; we
must decompose it and close under cut. Suppose we aim to incor-
porate the belief ⊢ q ∧ (r ∨ s) into the system, but it is not a full
belief. To achieve this, we need to decompose it:

⊢ q

⊢ r, s
(∨)

⊢ r ∨ s
(∧)

⊢ q ∧ (r ∨ s)

Now, to indicate that the original belief ⊢ q ∧ (r ∨ s) was nei-
ther a Full Belief nor a Tautology, we adjust its value by adding
the number 1 − δ instead of 1. This adjustment accounts for the
infinitesimal nature of δ, and its division by 2 ensures the preser-
vation of infinitesimal characteristics.

1

1−δ

B
q

1

1−γ

B
r, s

(∨)

1

1−γ

B
r ∨ s

(∧)

2

1−(δ+γ)

B
q ∧ (r ∨ s)

In the event that either ⊢ q or ⊢ r, s is employed in a deriva-
tion, we explicitly denote this value in the sequent derivation. For
instance:

1

1

B
p, p

(∨)

1

1

B
p ∨ p 1

1−δ

B
q

(∧)

2

2−δ

B
(p ∨ p) ∧ q

1

0

B
p, q

(∨)

1

0

B
p ∨ q

(∧)

3

2−δ

B
(p ∨ p) ∧ q ∧ (p ∨ q)
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This implies that, even without knowing the initial values of the
leaves, we can still make observations about the value 2− δ/3: the
standard part of the derivation is the Fractional Semantics value in
GS4B is 2/3 and we can observe that there is only one infinitesimal
number, indicating that only one of the initial beliefs is a Revisable
Belief. The portion that is neither a Full Belief nor a Revisable
Belief is then 1/3, representing what remains between 2/3 and 1.

1.5 Conclusions

The current endeavor to unite Full Beliefs, Revisable Beliefs, and
tautologies represents an initial stride towards establishing a con-
nection between Fractional Semantics and Probability. Fractional
Semantics emerges as a powerful instrument for delineating the in-
tricacies of a derivation, offering valuable insights into the dynamic
evolution of belief values and the interplay between Revisable Be-
liefs and Full Beliefs throughout the proof. This amalgamation
serves as a foundational framework, setting the stage for a more
comprehensive exploration of the relationship between Fractional
Semantics and Probability.

The forthcoming phase of our research will delve into eluci-
dating the intricate links between Fractional Semantics and Belief
Revision. This constitutes another pivotal facet that underscores
the significance of the introduced system. The versatility of our
system, embracing both the stability of Full Beliefs and the adapt-
ability of Revisable Beliefs, positions it as an invaluable tool for
delving into the nuances of belief dynamics and their evolution
over the course of iterative revisions. By bridging the gap between
Fractional Semantics and Belief Revision, we aim to provide a
more holistic understanding of the nuanced interplay between for-
mal semantics and the adaptive nature of belief systems.
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