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Abstract

In his Tractatus, Wittgenstein proposed a method for calculating
probability using truth tables, which served as inspiration for Car-
nap and Ramsey’s work on probability. Despite this, Wittgenstein’s
idea was not widely considered in the literature. Some scholars have
interpreted Wittgenstein’s idea as a generalization of the indifference
principle, while others view it as an attempt to analyze the relationship
between beliefs and logic. Wittgenstein’s method involves comparing
two propositions, where the first is considered only in true instances,
while the other is analyzed only when the first is true. This approach
is not dissimilar from Makinson’s supraclassical logic, despite the use
of different methods.

The aim of this work is to shed light on Wittgenstein’s method and
demonstrate the relationship between Wittgenstein’s probability and
Makinson’s supraclassical logic, illustrating that Wittgenstein created
one of the first logics that was able to consider beliefs in the calculus.

Wittgenstein’s method involves comparing two propositions, one of
which is only considered in true instances, while the other is analyzed
only when the first is true. The probabilities of these propositions
are then compared to determine their relationship. This approach is
similar to Makinson’s supraclassical logic, which considers statements
together with set of beliefs. We will also address an intriguing link
with the Lottery paradox.

In conclusion, Wittgenstein’s method for calculating probability
using truth tables, while not widely considered in the literature, was
an important contribution to the development of probability theory.
Wittgenstein’s work demonstrates the importance of considering be-
liefs when reasoning about probability, and his contributions continue
to be relevant to contemporary discussions in the field.
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1 Introduction

The aim of this work is to provide a comprehensive account of Wittgenstein’s
notion of probability, as originally introduced in the Tractatus and linking
that to supraclassical logics. While some have interpreted Wittgenstein’s
understanding of probability as merely a generalization of the indifference
principle, we argue that it encompasses a far more nuanced perspective. Al-
though Wittgenstein’s initial interpretation of probability may appear sim-
plistic, a more thorough analysis reveals its depth and significance. Briefly,
it is one of the first attempts to consider logic within beliefs.

According to Wittgenstein, probability is defined by the relationship be-
tween the “belief’s truth-possibilities” (Wahrheitsmöglichkeiten) [1, 2, 9, 13]
and the truth possibilities of the proposition under consideration. Through-
out his Tractatus [19], Wittgenstein posits that probability is a priori and
maintains this viewpoint in his later writings, wherein he firmly rejects fre-
quentism as the correct interpretation of probability:

Let’s assume that someone playing dice every day were to throw,
say, nothing but ones for a whole week, and that he does this with
dice that turn out to be good when subjected to all other methods
of testing, and that also produce the normal results when someone
else throws them. Does he now have reason to assume a natural
law here, according to which he always has to throw ones? Does
he have reason to believe that things will continue in this way –
or (rather) to assume that this regularity won’t last much longer?
So does he have reason to quit the game since it has turned out
that he can throw only ones; or to continue playing, because now
it is just all the more likely that on the next try he’ll throw a
higher number? – In actual fact he’ll refuse to acknowledge the
regularity as a law of nature; at least it will have to last for a long
time before he’ll consider this view of regularity. But why? – I
think it’s because so much of his previous experience in life refutes
such a law, experience that has to be, so to speak – vanquished
before we accept a totally new way of looking at things. [18, 104e]

One of the objectives of this paper is to prove that Wittgenstein’s prob-
ability is a supraclassical logic, i.e., a logic that is able to derive more than
classical logic usually permits [12], that is able to consider beliefs as axioms.
In this sense it is mandatory to lose substitution due to the Post complete-
ness [16]. The idea lies on the fact that for Wittgenstein probability is a sort
of extension of classical logic:
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[5.156] It is in this way that probability is a generalization.
It involves a general description of a propositional form.
We use probability only in default of certainty—if our knowledge
of a fact is not indeed complete, but we do know something about
its form.
(A proposition may well be an incomplete picture of a certain
situation, but it is always a complete picture of something.)
A probability proposition is a sort of excerpt from other proposi-
tions.

In Wittgenstein’s concept of probability, truthfulness is not solely deter-
mined by logic but also by knowledge, namely, beliefs. As a result, proposi-
tions that do not hold as true in classical logic due to not being tautologies
can still be assigned values greater than 0 in probability framework. The
objective of this research is to establish a connection between Wittgenstein’s
idea of probability as a supraclassical logic and the development of his views
on probability.

To accomplish this, we draw upon Makinson’s foundational work, “Bridges
between classical and non-monotonic logic” [12], with a specific focus on the
section dedicated to probability and beliefs. This examination seeks to il-
lustrate that Wittgenstein’s probability, albeit unconventional, aligns with
supraclassical logics and with Kolmogorov’s axioms, signifying its compat-
ibility with fundamental principles of probability theory. The peculiar as-
pect of Wittgenstein’s probability should be noted, as it extends beyond the
confines of classical logic by incorporating knowledge-based evaluations of
truthfulness for propositions.

Moreover, we provide a link between the well known Lottery Paradox and
the Wittgenstein’s idea of probability, showing that in this framework it is
easily solvable, but also interesting from the philosophical point of view. By
delving into these connections, we aim to shed light on the unique character-
istics and implications of Wittgenstein’s probabilistic approach.

2 Probability and possibility in Wittgenstein’s
Tractatus

Wittgenstein’s probability can be seen as an endeavor to establish a con-
nection between beliefs and propositions. In "theories of probabilities" [3],
De Finetti distinguishes between possibilities, which are objective, and prob-
abilities, which are subjective. Wittgenstein’s approach lies somewhere in

3



between these two concepts. On one hand, Wittgenstein analyzes each pos-
sibility of falsity and truthfulness, akin to possibilities in De Finetti’s frame-
work. However, on the other hand, the agent’s ability to choose the initial set
of propositions introduces a subjective element, linked to the agent’s personal
knowledge of a given argument.

Despite its significance, probability in Wittgenstein’s work is often consid-
ered marginal, with little written on his specific views regarding probability.
Notably, Wittgenstein’s primary reflections on the nature of probability can
be found in the Tractatus, starting from proposition 5.1.

[5.1] Truth-functions can be arranged in series.
That is the foundation of the theory of probability

Surprisingly, Von Wright, one of the first and most important authors that
worked on Wittgenstein and in particular on the topic of probability in his
work, does not include this proposition in the list of meaningful propositions
about probability in [20], where he states:

There are three main sources for a study of Wittgenstein’s views
of probability. The first are propositions 5.15 — 5.156 of the
Tractatus. The second is Section XXII of the Philosophische Be-
merkungen written in 1929 or 1930. The third is a typescript
of 18 pages, presumably composed in the academic year 1932-
1933 on the basis of manuscripts from the immediately preceding
years. [20, p. 259]

In summary, Wittgenstein’s probability can be viewed as an intriguing at-
tempt to bridge the gap between beliefs and propositions. While resembling
objective possibilities in some aspects, it also exhibits subjective character-
istics by allowing agents to determine the initial set of propositions based on
their personal knowledge. Despite its relative lack of extensive treatment,
Wittgenstein’s reflections on probability in the Tractatus offer valuable in-
sights into this complex subject. Preliminar reflections on these can be found
in the Notebooks 1914-1916 and in the reflections made in the Vienna Circle.
We find other reflections on the theme in Philosophical Grammar and the
Big Typescript [18].

2.1 How probability works in the Tractatus

The notion of probability presented in Wittgenstein’s Tractatus Logico Philo-
sophicus may initially strike one as unusual, particularly when compared to
the conventional modern perspective on probability. Wittgenstein’s singular
definition of probability is articulated in proposition 5.15:
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[5.15] If Tr is the number of the truth-grounds of a proposition
r, and if Trs is the number of the truth-grounds of a proposition
s that are at the same time truth-grounds of r, then we call the
ratio Trs/Tr the degree of probability that the proposition r gives
to the proposition s.

In practical terms, this approach entails examining instances where a
belief proposition holds true and quantifying how many of these instances
align with the true instances of the proposition under analysis, based on the
original set of beliefs.

Example 2.1. Let us now examine an example drawn from everyday life:
the act of tossing a coin. The main proposition under consideration will
be denoted as x∨y, where the symbol ∨ represents the mutually exclusive
disjunction. In this context, the two possible outcomes, i.e., "head" and
"tail," are mutually exclusive. The truth table for the proposition x∨y is as
follows:

x∨y x y
1 F T T
2 T T F
3 T F T
4 F F F

Considering only the cases where x∨y is true, we find that only the second
and the third rows satisfy this condition. Now, let’s determine the proba-
bilities of x and y given the proposition x∨y. For the proposition x, out of
the two instances where x∨y is true, only the second instance has x as true
while the third instance has x as false. Therefore, the probability of x given
x∨y is 1/2. Similarly, for the proposition y, out of the two instances where
x∨y is true, only the third instance has y as true while the second instance
has y as false. Thus, the probability of y given x∨y is also 1/2.

To summarize, when we toss a coin and consider the mutually exclusive
disjunction proposition x∨y, the probability of x and y given this proposition
is 1/2 for both cases, as expected.

The reason behind Von Wright’s perspective in [20] depicting the consid-
ered set as a set of beliefs becomes evident. Beliefs are perceived by an agent
as unequivocally true, and this aligns with Wittgenstein’s approach in the
Tractatus. To provide further clarity, we shall introduce a novel formaliza-
tion that was not presented by Wittgenstein, but that is very similar to the
one used for conditionalization: this is due to the fact that Wittgenstein’s
method can be addressed as a formalization of conditionalization. In this
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formalization, we define the subscript as the set of beliefs under considera-
tion for probability calculus. To illustrate this, let us revisit example 2.1,
where the belief set considered was x∨y. Accordingly, the probability that x
occurs, given x∨y, is denoted as px∨y(x) = 1/2.

Example 2.2. Let’s now explore the case of the two coins problem. Imagine
we need to toss two coins, and we want to calculate the probabilities using
Wittgenstein’s method. In this scenario, the proposition we’ll analyze is
x ∧ r, which, represents the probability of obtaining two heads from tossing
two coins. To proceed, we need to consider each coin’s results separately:
let’s designate the first coin’s outcomes as x or y, and the second coin’s
outcomes as r or s.

The truth table for the proposition (x∨y) ∧ (r∨s) is shown below:

(x∨y) ∧ (r∨s) x y r s (x ∧ r) (y ∧ s)
1 F T T T T T T
2 F T T T F T F
3 F T T F T F T
4 F T T F F F F
5 F T F T T T F
6 T T F T F T F
7 T T F F T F F
8 F T F F F F F
9 F F T T T F T
10 T F T T F F F
11 T F T F T F T
12 F F T F F F F
13 F F F T T F F
14 F F F T F F F
15 F F F F T F F
16 F F F F F F F

Let’s consider that A = (x∨y)∧(r∨s). As per Wittgenstein’s method, we
find that pA(x) = pA(y) = pA(r) = pA(s) = 0.5, and pA(x ∧ r) = pA(y ∧ s) =
0.25. This confirms that the probability of getting two consecutive heads is
25%, which is the same for getting the first toss as head and the second toss
as tail. Meanwhile, the probability of the first toss resulting in heads is 50%.

Let’s now examine the likelihood of achieving a scenario with two heads,
denoted as x∧ r. Upon closer inspection, we observe that the condition x∧y
holds true solely in the sixth line, among a total of four instances where
truth is affirmed. Similarly, this pattern emerges with y ∧ s, representing
the chance of obtaining one head and one tail. This leads us to conclude

6



that despite the method’s seemingly unconventional nature, it harmoniously
adheres to the principles governing probabilities.

2.2 Two elementary propositions

In one of the most significant statements concerning probability, one partic-
ular proposition stands out:

[5.152] Two elementary propositions give one another the proba-
bility 1/2.

Von Wright [20, p. 262] argues that the interpretation of this statement
depends on one’s understanding of elementary propositions. However, in
my view, now that the system is clarified, Wittgenstein’s intended meaning
becomes quite apparent. Let’s consider a single elementary proposition, de-
noted as x, and an unrelated proposition, denoted as y. The corresponding
truth table is as follows:

x y
1 T T
2 T F
3 F T
4 F F

As we observe from the truth table, y is true only once out of the two
total instances. This arises from the fact that we have no information about
the relationship between x and y ; the only knowledge we possess is that they
are not mutually related.

It is essential to emphasize that, in 5.152, Wittgenstein stated that “Two
independent propositions give one another the probability 1/2.” This state-
ment, however, presents a particular problem due to the definition of inde-
pendence provided in the same proposition in the Prototractatus [17] and in
the first version of the Tractatus [1, 20]: When propositions have no truth-
arguments in common with one another, we call them independent of one
another. This implies that propositions like x ∨ ¬x and y ∨ ¬y are indepen-
dent, but their probability is not 1/2; rather, it is 1 because both of them
are tautologies. The same holds true for two contradictions, which can’t be
calculated because on the left we have an undetermined value. It is plausible
that Wittgenstein was aware of this issue and thus modified the text in the
second edition of Tractatus (1933) [1, 20].

7



3 Wittgenstein and supraclassical logic

Makinson’s contribution that will be analysed here lies in his introduction
of the concept of supraclassical logic, as documented in [12]. Supraclassical
logics, a realm of formal reasoning that transcends the limitations of classical
logic, have garnered substantial interest due to their capacity to deduce con-
clusions beyond what classical logic traditionally allows. Makinson employs
a diverse array of methodologies to achieve this expansion, with one promi-
nent approach involving the incorporation of sets of beliefs into the logical
framework. Through this technique, propositions that typically remain un-
decidable within classical logic can be validated as true owing to the presence
of the supplementary belief sets. Notably, this approach exhibits intriguing
parallels with the philosophical underpinnings of Wittgenstein’s work.

It’s worth noting that while Wittgenstein’s approach also explores the
notion of probability, Makinson’s focus in the initial section of the book
centers on propositional logic, however, as the book progresses, Makinson
delves into the realm of probability theory. It is from this exploration that
the seeds of inspiration for our concept of linking these seemingly distant
authors were sown.

The interesting thing of Wittgenstein’s method is that was considered
only a generalization of Laplace’s principle of indifference: if there aren’t
evidences that one outcome is more preferable than another, then the agent
must distribute her credences equally among the total number of outcomes.
Actually it isn’t just that, it is something more deep: Wittgenstein in fact
proposed a method that considers one proposition as true and he compares
that proposition with what we want to know. The number that he obtains is
on one hand the generalization of Laplace principle, but on the other hand
is proposing a different kind of logic, that is not only analyzing probability,
but also compare a proposition with a given set of beliefs.

Let’s consider example 2.2, depicting a coin toss. Notably, deriving ⊢B

x∨y is elusive; its truth isn’t immediately evident. However, Wittgenstein’s
view offers a fresh angle. It prompts us to assess not only binary truth but
also the proposition’s frequency amid all potential outcomes.

Wittgenstein introduces a novel stance on belief-logic dynamics. He po-
sitions probability as a broader extension of classical logic, though not a
complete supraclassical logic. This viewpoint enriches our grasp of proposi-
tion nuances in various contexts. Wittgenstein’s insight unveils the intricate
ties between beliefs and logic. While probability isn’t fully supraclassical, it
links these domains, hinting at exciting avenues for future exploration and
understanding.
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3.1 Kolmogorov’s axioms and Wittgenstein truth tables

Another very interesting point to note is that Wittgenstein’s truth tables
satisfy the Kolmogorov’s axioms, i.e., the four Kolmogorov’s axioms [12] are
proved by the truth tables as intended in the considered part of the Tractatus.
Informally they were firstly proved as provable in Wittgenstein’s system in
[13]. The axioms are as follows:

(K1) 0 ≤ p(x) ≤ 1

(K2) p(x) = 1 for some formula x

(K3) p(x) ≤ p(y) whenever x ⊢ y

(K4) p(x ∨ y) = p(x) + p(y) whenever x ⊢ ¬y

(K1) and (K2) follow from construction: the final value must be a number
between 0 and 1. It can’t be less than 0 because the worst that can happen
is that, as a belief, we have a contradiction, i.e., all instances are false. On
the other hand, if the proposition we are analysing is equivalent to our belief
or is a tautology, we will obtain the value of 1, but not more. This last
consideration let the proof of (K2) obvious. (K3) can be proved thanks to
the following truth table, where instead of x ⊢ y, we consider x → y as true,
that is a classical translation:

K3 x → y x y
1 T T T
2 F T F
3 T F T
4 T F F

where px→y(x) = 1/3 and px→y(y) = 2/3, so px→y(x) ≤ px→y(y) and (K4)
can be proved by the following:

K4 x → ¬y x y x ∨ y
1 F T T T
2 T T F T
3 T F T T
4 T F F F

where px→¬y(x) = 1/3, px→¬y(y) = 1/3 and px→¬y(x ∨ y) = px→¬y(x) +
px→¬y(y) = 1/3 + 1/3 = 2/3 as wanted.

If we want to prove something generic the things become a little bit
worse, because we have to check every case, for example if we want to prove
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(K5) p(¬x) = 1− p(x) we must distinguish between the four combination of
truthfulness and falsehood.

K5 Formula x ¬x
1 T T F
2 F F T

pformula(x) = 1, pformula(¬x) = 0 and pformula(¬x) = 1− pformula(x).

K5 Formula x ¬x
1 T T F
2 T F T

pformula(x) = 0.5, pformula(¬x) = 0.5 and pformula(¬x) = 1− pformula(x).

K5 Formula x ¬x
1 F T F
2 T F T

pformula(x) = 0, pformula(¬x) = 1 and pformula(¬x) = 1− pformula(x).

K5 Formula x ¬x
1 F T F
2 F F T

This last case is obviously special because we are giving a contradiction
formula as a belief, so it’s always false. Despite this, it was not really useful
proving K5 from a formal point of view, because once K1-K4 were proved,
than also K5 is provable from the first four axioms without using the truth
tables.

Proving the Kolmogorov’s axioms has a double benefit: it proves that
Wittgenstein’s idea of probability is something related to the common idea
of it and it permits us to restrict the set of valuations to make a supraclassical
logic.

3.2 Why Wittgenstein’s probability is a supraclassical
logic?

We have now shown that Wittgenstein’s probability satisfies Kolmogorov’s
axioms. We can now turn to the main problem: is Wittgenstein’s probability
a supraclassical logic? Until now, we have only described a probabilistic logic,
not a supraclassical one.
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Definition 3.1 (Supraclassical logic). A supraclassical logic is a logic that
can derive more than classical logic usually permits, i.e., if ⊢S is the symbol
for the supraclassical logic derivation, than it can be the case that p ⊢S q
also if p ̸⊢ q.

In [12], Makinson elucidates the process of constructing a supraclassical
logic thanks to three different techniques. The first of them, and the one
that we will consider here, is to add a new set of axioms, namely beliefs, to
let the logic prove more than classical logic usually permits. This method
let the logic gain the ability to derive more than usual, also if it loses some
property like the substitution, i.e., it loses Post Completeness.1

Following Wittgenstein’s method it is clear why this is a supraclassical
logic: it considers beliefs that are added into the system. Beliefs are exactly
the left part of the derivation that we have made in the previous sections:
beliefs for Wittgenstein, also if he doesn’t call them this way, are the starting
point to derive a certain number greater than 0, i.e., the value that classical
logic would assign to the examples made earlier.

Someone can argue that Makinson, later in the book, integrates this with
the probability theory, in particular he focuses on the non-monotonic ver-
sion of the probabilistic supraclassical logic, so why can’t we concentrate on
them? The case that Makinson considers is useful if we want to create a non
monotonic supraclassical logic, but this is not possible in the Wittgenstein’s
framework.

The Makinson’s approach to supraclassical probabilistic logics involves
the imposition of constraints on valuations. The crux of this approach lies
in the selection of a specific subset, denoted as Q, extracted from the larger
set P . Intriguingly, this subset Q possesses the unique property of assigning
a probability value of 1 to a designated formula, even in scenarios where the
encompassing set P fails to do so. To illustrate this, let us consider an exam-
ple involving inconsistent sets of beliefs. Typically, an inconsistent set would
attribute a probability value of 0 to every proposition. However, through the
strategic confinement of the set to a consistent subset, the assignment of a
probability value becomes viable.

This principle can be extended to various contexts. For instance, imagine
the set P representing the logical conjunction x ∧ y, and we seek to ascer-
tain the probability value of x. In the absence of constraints, the resultant
probability would be 0.5. Nevertheless, by confining the analysis to solely
the proposition x, we can derive a probability value of p(x) = 1.

1This result is proved independently by Makinson, saying that it loses substitution, but
the original result was proved by Emil Post in his doctoral thesis, see [16].
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The reason why we can’t concentrate on this is that Wittgenstein’s frame-
work inherently lacks the capacity to accommodate non-monotonic reason-
ing. This limitation stems from the framework’s heavy reliance on condi-
tionalizations, a foundational aspect that precludes the integration of prob-
abilistic non-monotonic logic. Makinson’s development of a probabilistic
non-monotonic logic necessitates the abandonment of the very concept of
conditionalization, which, as the framework is originally constructed, proves
unfeasible within this context.

In summation, Makinson’s exploration of supraclassical logic creation
through probability manipulation, as expounded in [12], can be effectively
applied to Wittgenstein’s methodology, in fact this way to treat probability is
in fact a supraclassical logic. This methodology finds resonance even within
Wittgenstein’s theoretical paradigm. However, it is crucial to recognize that
while Wittgenstein’s framework is intrinsically tied to conditionalization, this
feature inhibits the emergence of probabilistic non-monotonic logic, a fron-
tier that Makinson’s approach admirably advances by relinquishing the con-
straints of conditionalization.

4 Generalization of Wittgenstein’s probability

We have shown that Wittgenstein’s probability is consistent and it is a prob-
abilistic logic; we have also shown that it is a supraclassical logic and this
will help us for the following result: proving that thanks to Wittgenstein’s
method it is possible to solve a class of belief paradoxes, such as the Lot-
tery Paradox [5, 8, 11] introduced in [10]. The lottery paradox is defined as
follows:

Let’s consider a fair 1000-ticket lottery that has only one win-
ning ticket. A perfectly rational agent knows that each ticket has
a probability of 999/1000 of not winning. Thus, it is rational
for the agent to accept that each ticket will not win because this
probability is greater than her Lockean threshold. This reasoning
can be extended to every other ticket in the lottery, leading to
the conclusion that somehow every ticket will not be the winning
ticket. However, the lottery is fair, so the conjunction of all these
statements has to be false, rather than true as it appears.

The idea of solving this paradox thanks to Wittgenstein’s idea is interesting
because of the following proposition, that we also have addressed in the
introduction:
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[5.156] It is in this way that probability is a generalisation.
It involves a general description of a propositional form. We use
probability only in default of certainty - if our knowledge of a
fact is not indeed complete, but we do know something about
its form. (A proposition may well be an incomplete picture of
a certain situation, but it is always a complete picture of some-
thing.) A probability proposition is a sort of excerpt from other
propositions.

In fact, if we follow Wittgenstein’s idea, we can solve the Lottery paradox
inside a generalisation of classical logic. The proof of the fact that Wittgen-
stein’s method is a supraclassical logic, also coheres with this proposition,
creating a link between a 1929’s method and a very recent one. This solution
can be given without dropping the principle of conjunction between rational
beliefs as the author of the paradox, Kyburg, has originally suggested in [10].

One of the intriguing outcomes facilitated by this approach is its capacity
to address belief paradoxes, such as the Lottery Paradox. This paradox has
generated substantial literature and is readily demonstrable that, under a
classical framework and within the context of the Lockean Thesis, it remains
paradoxical. However, if we adopt Wittgenstein’s perspective that this form
of probability extends classical logic, we can identify a method within it that
effectively resolves the Lottery Paradox.

To achieve this, we need to establish that when dealing with a conjunc-
tion involving a finite yet arbitrarily large number of elementary propositions,
where all but one are negative, only a singular True line emerges. Further-
more, it becomes essential to demonstrate that this true line occupies a spe-
cific position within the matrix and maintains its uniqueness as we select
distinct propositions, each with the positive formula in a different position.
Utilizing these insights, we can construct a disjunction encompassing all con-
ceivable scenarios, resulting in exactly n True lines—where n represents the
count of literals within the formula. Firstly let’s see the following true ta-
ble, but let’s consider that instead of including both T (True) and F (False)
values for each proposition, we have opted for a more readable table format.
This is why, in our table, ¬p1 is represented as F in its initial entry:
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¬p1 ∧ ¬p2 ∧ . . . ∧ px ∧ ¬px+1 ∧ . . . ∧ ¬pn
1 F F T F F

2 F F T F T
...

...
...

...
...

...
2n−1 F T T T T

2n−1 + 1 T F F F F
...

...
...

...
...

...
2n−1 + 2n−2 T F T F T

2n−1 + 2n−2 + 1 T T F T F
...

...
...

...
...

...
2n − 2n−x − 1 T T T T F
2n − 2n−x T T T T T

2n − 2n−x + 1 T T F F F
...

...
...

...
...

...
2n T T F F T

This truth table needs some hint to let it be cleared:

1. To enhance clarity in tracking transitions from T to F , we have ex-
plicitly highlighted the most significant changes. For example, 2n−1

represents the last row where the truth value of ¬p1 changes, occurring
exactly at the midpoint of the entire truth table. Similarly, 2n−1+2n−2

marks the last row before the intermediate change of ¬p2.

2. The most intriguing row in the table is 2n − 2n−x because it consists
entirely of T instances. This is a result of the fact that on the left side
of px, we only have T instances that continually double in number with
each iteration. On the right side, we observe a similar pattern, but
with ’T’ instances halving until we reach the single T instance for ¬pn.

3. The value of 2n−2n−x corresponds to the last row before the truth value
of px changes. It can also be expressed as

∑x
i=1 2

n−i as it requires sum-
ming the halved values successively, reflecting the decreasing number
of T instances with each new proposition considered.
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The following theorem is the main theorem to be proved in order to
generalize Wittgenstein’s probability:

Theorem 4.1. If a proposition made by an arbitrary number of elementary
letters is made by all negated formulas and one positive formula, the only line
that is made by true instances is the line marked with the number 2n − 2n−x,
where x is the position of the elementary letter starting from the left.

We will first explain the process by which this truth table was created
before providing the proof: intuitively, to find which line is true we have to
consider the two extreme cases, i.e., p1 ∧ · · · ∧ ¬pn and ¬p1 ∧ · · · ∧ pn; then
we have to prove it for a generic px between p1 and pn. Let’s consider then
the following where the positive letter is the first, i.e., p1:

p1 ∧ ¬p2 ∧ ¬p3 ∧ . . . ∧ ¬pn
1 T F F F
2 T F F T
...

...
...

...
...

2n−2 T F T T
2n−2 + 1 T T F F

...
...

...
...

...
2n−2 + 2n−3 T T F F

2n−2 + 2n−3 + 1 T T T T
...

...
...

...
...

2n−1 T T T T
2n−1 + 1 F F F F

...
...

...
...

...
2n F T T T

As observed, to the right of a positive propositional letter, we notice a
diminishing count of admissible lines. The truth line is in fact 2n−1 that is
exactly

∑x
i=1 2

n−i = 2n − 2n−x where x = 1, following that 2n − 2n−1 = 2n−1.
This phenomenon arises because each time the upper half consists solely
of false instances and because of the conjunction property, it is possible to
consider only the bottom half each time. This pattern persists until we reach
the final propositional letter, which renders only one line true among the
total of 2n lines.

On the other hand, if we consider the other limit case, considering that
the only positive formula is pn we obtain:
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¬p1 ∧ ¬p2 ∧ ¬p3 ∧ . . . ∧ pn
1 F F F T
2 F F F F
...

...
...

...
...

2n−1 F T T F
2n−1 + 1 T F F T

...
...

...
...

...
2n−1 + 2n−2 T F T F

2n−1 + 2n−2 + 1 T T F T
...

...
...

...
...

2n−1 + 2n−3 T T F F
2n−1 + 2n−3 + 1 T T T T

...
...

...
...

...
2n − 1 T T T T
2n T T T F

This implies that to the left of pn, we witness a diminishing set of poten-
tial truth instances, as previously explained, with only the lower half being
considered for conjunction. Ultimately, the penultimate line stands as the
sole truth-bearing one, i.e. 2n − 1 that satisfies the formula 2n − 2n−x, where
x = n: 2n − 2n−n = 2n − 1.

For any generic positive value of px between p1 and pn, we need to consider
a range of values between these two extremes. If we examine the first truth
table, we can observe that when we start with ¬p1, we only need to focus
on the second half of the truth values since the false instances in the first
half are not relevant. Moving on to ¬p2, we continue to concentrate on the
second half, and this pattern continues until we reach ¬px−1.

When we consider px as true, the order of the true values changes. In other
words, the first half of the remaining true instances now becomes false, while
the second half remains true. As we proceed to ¬px+1, the true instances
again halve in the lower part, and this process continues until we arrive at
¬pn, which represents the last line where truth is possible. In conclusion, the
exact line where px is true in the table corresponds to 2n − 2n−x.

Combining these outcomes elucidates why precisely the line 2n − 2n−x is
replete with truth instances while the others cannot be true. Furthermore,
this unique truth-bearing line varies for each distinct variable x, as evidenced
by the changing values of 2n − 2n−x. From these considerations it is easy to
understand why the line made only by true instances is the last line where
px has a T -value: the idea of proof lies on this fact.
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Proof of Theorem 4.1. We can prove Theorem 4.1 by induction, leveraging
the fact that 2n − 2n−x represents the last line where px has a truth value of
T . The idea is to establish by induction that 2n+1 − 2n+1−x remains the last
line where px has a truth value of T and that each other propositional letters
have a T value in that line when we have n+ 1 propositional letters.

Base case: For the base case when n = 1, we note that the only true line is
the first one. This can be verified by calculating 21 − 20 = 2 − 1 = 1,
which matches the truth value in the first line.

Inductive step: Now, let’s consider the inductive step. Assuming that the
line number 2n−2n−x has only T instances for some value of n, we aim
to show that if x remains the same, then the new line should be twice
the value of 2n − 2n−x.

This is because of the construction of a truth table: if a line for a certain
propositional letter, let’s say line number i for letter a, was labeled as T
(F ) in a truth table created for n elementary propositions, then line 2i
for letter a will also be labeled as T (F ) when adding a new elementary
letter.

Proving this implies that at line 2(2n − 2n−x) for n+ 1 elementary let-
ters, each propositional letter between 1 and n will be true. Moreover,
the new elementary letter, ¬pn+1, will be true in that line because it
alternates between F and T (initially F because ¬pn+1 is false in the
first line, being a negated formula). This means that the T instances
will appear on even lines, and 2(2n − 2n−x) is even, completing the
correspondence between the two truth tables.

To complete the proof, we need to establish a correspondence between
2(2n − 2n−x) and 2n+1 − 2n+1−x. We can easily demonstrate that:

2n+1 − 2n+1−x = 2(2n − 2n−x)

This equation establishes the desired relationship between the new line
and the previous one, confirming that it aligns with our expectations.
As the inductive hypothesis establishes, the line 2n − 2n−x was true for
n. Therefore, the line 2(2n − 2n−x) will also be true for n + 1 because
the number of lines doubles, concluding the proof.

Going back to the initial problem of the Lottery paradox: due to the
uniqueness of each value of x on every occasion the disjunction of various
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conjunctions, where each conjunction follows a pattern of positive and neg-
ative literals, specifically:

(p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)∨
· · · ∨ (¬p1 ∧ · · · ∧ px ∧ · · · ∧ ¬pn)∨

· · · ∨ (¬p1 ∧ ¬p2 ∧ · · · ∧ pn)

will have exactly n lines. This is due to the fact that we want to formalize a
lottery and this means that we want the exclusive disjunction for each ticket.

Remarkably, this composite expression will consistently exhibit precisely
n instances of truth lines across all possible configurations of truth values.
It is noteworthy that our previous investigation has conclusively established
the singularity of the line characterized by a T-value. This uniqueness ma-
terializes as 2n − 2x for values of x ranging from 1 to n, with each individual
value of x generating a distinct outcome. We can see it in the following table:

(p1 ∧ · · · ∧ ¬pn) ∨ . . . ∨ (¬p1 ∧ · · · ∧ pn)
1 F F F
. . .
2n−1 T F T
. . .

2n − 1 F T T
2n F F F

In total we have n true instances and this means that when we consider
only one proposition, such as (p1 ∧ · · · ∧ ¬pn), it will be true 1/n times.

Example 4.1. Let’s see an example: let’s consider that the lottery has 1000
tickets, than the proposition will be A = (p1 ∧ · · · ∧ ¬p1000) ∨ · · · ∨ (¬p1 ∧
· · · ∧ p1000) and let’s say that the ticket that we have bought is the ticket
number 543, then we have to compare A with ¬p1 ∧ · · · ∧ p543 ∧ · · · ∧ ¬p1000.
The only true line for ¬p1∧ · · · ∧ p543∧ · · · ∧¬p1000 will be 21000− 21000−543 =
21000 − 2457. This line will be one of the 1000 true lines of the proposition
A for construction and this means that the final probabilistic value of the
truthfullness of ¬p1 ∧ · · · ∧ p543 ∧ · · · ∧ ¬p1000 given A will be 1/1000.

5 Conclusions

We have addressed a multitude of challenges within Wittgenstein’s proba-
bilistic framework through the comprehensive analysis presented in this pa-
per. Wittgenstein’s initial perspective on probability may, at first glance,
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appear unconventional, yet it takes on a distinct character when we empha-
size its inherent consistency. Our research demonstrates that Wittgenstein’s
approach adheres faithfully to Kolmogorov’s axioms and qualifies as a supr-
aclassical logic. Building upon these fundamental insights, we have solved
the Lottery Paradox, which, within this framework, ceases to be paradoxical
and instead finds resolution through an extension of classical logic.

While this methodology does not represent an entirely revolutionary paradigm
shift, we believe it has received less attention than its merits warrant. The
innovative incorporation of beliefs as a foundational element in the analy-
sis of probability introduces a novel dimension to the field. Looking ahead,
we are optimistic that our exploration of supraclassical logic and probabilis-
tic reasoning will make valuable contributions towards the development of
a new, robust supraclassical probabilistic logic. This emerging framework,
enriched by the incorporation of Wittgenstein’s philosophical insights, has
the potential to establish its own solid foundations within the realms of both
logic and philosophy.
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