
A solution to the Lottery Paradox through
Fractional Semantics

Matteo Bizzarri

Abstract

The Lockean Thesis and the Lottery Paradox have generated sig-
nificant discussions within the context of classical logic. In this paper,
we aim to provide a solution to this relationship by utilizing Fractional
Semantics. The approach offered by Fractional Semantics is flexible
enough to address the Lottery Paradox without using probability or
non-classical logic. Instead, Fractional Semantics introduces a distinct
type of semantics for Classical Logic, which proves to be an effective
tool for resolving the paradox.

Using Fractional Semantics to solve the Lottery Paradox offers sev-
eral benefits. First and foremost, it maintains the conjunction between
beliefs while still utilizing Classical Logic. Furthermore, it allows for
a more nuanced approach to the problem, offering greater insight into
the nature of truth and falsehood within a belief system.

Our research demonstrates that Fractional Semantics provides a
viable solution to the Lottery Paradox and highlights the value of
considering different approaches to logical reasoning. By incorporat-
ing a more flexible and nuanced framework for understanding the na-
ture of truth and belief, we can develop more effective strategies for
addressing complex problems in the real world.1

Introduction

The purpose of this paper is to provide a solution to the Lottery Paradox,
which is a well-known issue in classical logic. The paradox is closely linked
to the Lockean Thesis, which proposes that an agent can choose a rational

1Keywords: classical propositional logic, proof theory and constructive mathematics,
many-valued logics, logics of knowledge and belief, Lottery Paradox, Lockean Thesis,
beliefs and probability.
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number within the interval [0,1] to serve as a truth threshold for the semantic
interpretation of a formula. This threshold determines when an agent consid-
ers a proposition to be true. However, a paradox arises when this threshold
is applied to a lottery, resulting in the Lottery Paradox.

When using the Lockean Thesis to determine our beliefs in a lottery, we
would believe that each ticket is not the winning one. However, when we
construct a conjunction of all our beliefs, stating that no particular ticket
will win, this leads to a contradiction since one winning ticket must exist.
One proposed solution to this problem is to reject the closure of beliefs under
conjunction [11], but this is a strong thesis.

Our main idea is that Fractional Semantics can provide a solution to
the Lottery Paradox without requiring the rejection of the closure of beliefs
under conjunction. By utilizing Fractional Semantics, we can represent an
agent’s beliefs as a set of truth values between 0 and 1 rather than a single
threshold value. This allows for a more nuanced and flexible representation
of an agent’s beliefs, which can help to untangle this paradoxical situation.

In the first section, we will provide a brief overview of the basic concepts
of fractional semantics [13, 15]. In the second section, we will examine how
Fractional Semantics can be expanded through the incorporation of beliefs,
which were initially introduced in [2]. Finally, in the last section, we will
discuss a method that may be useful in resolving the Lottery Paradox, thanks
to the developed theoretical platform.

1 Fractional Semantics’ framework

Fractional semantics [13, 15] for classical logic is a type of multi-valued se-
mantics that operates based on pure proof theoretic considerations, where
truth-values are rational numbers in the interval [0,1]. Unlike classical Boolean
interpretation, fractional semantics breaks the symmetry between tautologies
and contradictions. It assigns values that measure the level of contradiction
of a formula. Thus, it can be used as a measure of whether a given proposition
is closer to a tautology or a contradiction.

To allow for a fractional interpretation of its formulas, fractional seman-
tics requires an appropriate proof-theoretic platform, namely a decidable
logic L that can be displayed in a sequent system S. Fractional semantics
is obtained by focusing on the axiomatic structure of proofs expressed in
Kleene’s one-side sequent system GS4 [10, 17]. The system has the following
rules:
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(ax.)
⊢ Γ, p, p

⊢ Γ, A,B
(∨)

⊢ Γ, A ∨B

⊢ Γ, A ⊢ Γ, B
(∧)

⊢ Γ, A ∧B

Negation is inductively defined by different atomic formulas p and p, where
p indicates the negation of p. The interpretation of a formula is the result
of the ratio between the number of identity top-sequents (∆, p, p) out of the
total number of top-sequents occurring in any of its proofs. Weakening and
contraction are dropped while cut rule has the form:

⊢ Γ, p ⊢ p,∆
(cut)

⊢ Γ,∆

In order to give a fractional interpretation a counterpart is needed, namely

GS4, that is the GS4 calculus maximally extended:

Definition 1.1 (GS4). GS4 is defined as GS4 calculus maximally extended,
adding the complementary axiom schema which enables the introduction of

whatsoever consistent clause ⊢ ∆. The system GS4 is deductively trivial, i.e.
anything can be derived in the system.

Definition 1.2 (JΓK). JΓK, for each multiset Γ, indicates the fractional se-
mantics value of Γ.

In GS4, for instance, ⊢ p → (q ∧ p) translated in GS4 as ⊢ p ∨ (q ∧ p) is
derivable:

ax.⊢ p, q
ax.

⊢ p, p
(∧)

⊢ p, q ∧ p
(∨)

⊢ p ∨ (q ∧ p)

In classical logic the value of this sequent would be 0, but in fractional
semantics it is possible to assign a value based on the number of tautological
clauses out of two axioms in total, i.e., Jp ∨ (q ∧ p)K = 1/2 = 0.5, because of
the presence of ⊢ p, p. Stability guarantees that any other decomposition of
this sequent will always return the value 0.5. It is possible to give a formal
definition of top-sequents axioms:

Definition 1.3 (Top-sequents axioms).
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top1(π) : denotes the multiset of all and only π’s top-sequents introduced by
an identity axiom;

top0(π) : denotes the multiset of all and only π’s top-sequents introduced
by a complementary axiom, in other words, those axioms that are not
tautological.

Any formula A can be interpreted as the ratio between the number of identity
top-sequents (sequents introduced by the standard axiom) out of the total
number of top-sequents.

JAK =
top1(π)

top1(π) + top0(π)

Example 1.1. Let’s take another example to make the process clearer: let’s
take ⊢ (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t) and decompose it:

(ax.)
⊢ p, q

(∨)
⊢ p ∨ q

(ax.)
⊢ p, p

(∨)
⊢ p ∨ p

(∧)
⊢ (p ∨ q) ∧ (p ∨ p)

(ax.)
⊢ r

(ax.)
⊢ t

(∧)
⊢ (r ∧ t)

(∧)
⊢ (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

This proof contains one identity axiom out of four axioms in total and this
means that:

J(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)K =
1

4
= 0.25

The final value of the sequent A will be 1/4 and it is the same for every
decomposition of the considered sequent (Figure 1). Fractional semantics is
able to keep trace of the number of contradictions out of the total number
of axioms.

0

⊥

0.25

JAK

1

Tautology

Figure 1: The value of JAK.

It is possible to define the fractional semantics in terms of a multi-valued
logics, made by this definition:

Definition 1.4 (Top-sequents). Top-sequents represent the number of the
leaves of the proof as defined in Definition 1.3 and J∨ΓK represents the value
assigned to the multiset Γ where only ∨−applications appear.
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top1(π) : let’s call this m

top0(π) : let’s call this n

J∨ΓK is m
n
∈ [0, 1]

From this definition it is possible to give general rules:

(ax.)

1
1
Γ, p, p

(ax.)

1
0
∆

n
m

Γ, A,B
(∨)

n
m

Γ, A ∨B

n1

m1
Γ, A n2

m2
Γ, B

(∧)

n1+n2

m1+m2
Γ, A ∧B

This method will permit to keep track of the value at every stage of the proof.

Example 1.2. Let’s take the same sequent considered before in example 1.1,
but now using this decorated derivation.

(ax.)

1
0
p, q

(∨)

1
0
p ∨ q

(ax.)

1
1
p, p

(∨)

1
1
p ∨ p

(∧)

2
1
(p ∨ q) ∧ (p ∨ p)

(ax.)

1
0
r

(ax.)

1
0
t

(∧)

2
0
(r ∧ t)

(∧)

4
1
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

The main difference between Example 1.1 and 1.2 is that in 1.2 is possible
to read the fractional semantics value each time a rule is introduced. For
example the fractional semantics value of ⊢ (p∨ q)∧ (p∨ p) will be 1/2 = 0.5
as it’s easily noticeable in the proof.

2 Framing beliefs into fractional semantics

Now that the general framework is presented, it is possible to see how to
consider beliefs in the fractional semantics for classical logic, firstly appeared
in [2]. The idea is simple: a set of axioms, let’s say B, that are considered true
by an agent, is added to the system and every proposition in it is considered
as true as tautologies. The philosophical idea behind this process is that an
agent usually considers true their own beliefs.
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Beliefs would be considered as deductively closed: this means that every
deduction made using true beliefs will be considered true and this also means
that the agent is a deductively ideal one. It is interesting to see what happens
if the fractional semantics is provided with a system that is able to manage
these new axioms, because it will be possible to obtain values greater than
the ones that fractional semantics usually permits.

The idea for this kind of expansion was born thanks to the first of the three
methods that Makinson used in [12] to bridge the gap between classical and
non-monotonic logic, made by adding background assumptions. This kind
of method was called pivotal-assumption consequence and permitted to infer
more than classical logic permits thanks to a set of axioms that are added to
the premises in every deduction.

Fractional semantics for classical logic updated with a set of new beliefs is
different from pivotal-assumption consequence because of two main reasons.
The first one is that Makinson used a classical two-valued semantics, whereas
fractional semantics is a multi-valued interpretation. On the one hand pivotal
assumption consequence would assign the value 0 if at least one of the axioms
is neither a proper axiom nor a belief, on the other hand fractional semantics
is provided by a system able to assign values greater than 0 when one of the
top sequents is a tautology or a belief. The second reason is that, although
both of them were born thanks to syntactical techniques, Makinson used
an Hilbert-style approach, while fractional semantics uses the Gentzen-style
one.

In order to add beliefs to the system, they must be atomic, if they are
not, they must be decomposed.

Definition 2.1 (GS4B). Let GS4 as defined earlier, GS4B is defined as
GS4 with a set of new axioms, namely B = b1, . . . , bn, that represents a
non-contradictory set of beliefs of an agent. Each bi (1 ≤ i ≤ n) must be
atomic.

Definition 2.2 (⊢B). If ⊢ is the closure relation of classical logic, ⊢B is
defined as the closure relation of GS4B.

Remark 2.1. Makinson [12] pointed out the problems arising when new ax-
ioms are added to the system. In fact, substitution is no longer acceptable
when the system has the possibility to manage new non-logical axioms. The
same result, even if it is not cited by Makinson, is due to the fact that classical
logic is a Post-complete system and this means that, once a nontautological
formula is added to the system, the new system will be inconsistent, unless
structurality is dropped. The system loses the structurality because structural-
ity and consistency are mutually excluding properties in classical logic with
extra-logical axioms [14].
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Now it’s possible to go further into the formalization of the system: let’s
define the top sequent made from beliefs added to the system.

Definition 2.3. topb(π) : denotes the multiset of all and only π’s top-sequents
introduced by a belief.

JAKB =
topb(π) + top1(π)

topb(π) + top1(π) + top0(π)

Example 2.1. Let’s see an example taking the same sequent seen in example
1.1, but adding now the belief ⊢B (p ∨ q) ∧ u. The first thing to do, in order
to add the belief, is to decompose it and add that to the belief set.

(b1)⊢B p, q
(∨)

⊢B p ∨ q
(b2)⊢B u
(∧)

⊢B (p ∨ q) ∧ u

From this it is possible to add the two beliefs b1 = p, q and b2 = u to the belief
set.

Let’s take the same decomposition seen in example 1.1: it is possible to
see where a belief is added to the system, namely b1, because u doesn’t appear
in the sequent.

(b1)⊢B p, q
(∨)

⊢B p ∨ q

(ax.)
⊢B p, p

(∨)
⊢B p ∨ p

(∧)
⊢B (p ∨ q) ∧ (p ∨ p)

(ax.)
⊢B r

(ax.)
⊢B t

(∧)
⊢B r ∧ t

(∧)
⊢B (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

This proof contains one identity axiom, one belief and two complementary
axioms, so JAKB is:

JAKB =
topb(π) + top1(π)

topb(π) + top1(π) + top0(π)
=

1 + 1

1 + 1 + 2
=

2

4
= 0.5

Like in example 1.2, it is possible to see the same tree with multi valued
system, adding a new rule:

(bi)

1
1

B
B
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Where B denote the set of belief, B = b1, . . . , bn.

Example 2.2. Now it’s possible to see Example 2.1 with the multi valued
system.

(b1)

1
1

B
p, q

(∨)

1
1

B
p ∨ q

(ax.)

1
1

B
p, p

(∨)

1
1

B
p ∨ p

(∧)

2
2

B
(p ∨ q) ∧ (p ∨ p)

(ax.)

1
0

B
r

(ax.)

1
0

B
t

(∧)

2
0

B
(r ∧ t)

(∧)

4
2

B
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

The only difference between Example 1.2 and 2.2 can be seen in the substi-
tution with the value 1 instead of the 0 for the top axiom ⊢ p, q. In Figure 2
it is possible to see how the value of A changed when was considered in the
fractional semantics framework without beliefs and when one belief is added.

0

⊥

0.25

JAK

0.5

JAKB

1

Certainty (GS4B)

Figure 2: The values of JAK and JAKB.

It is worth noting that if this sequent was considered in classical logic, it
would have different values changing by the value of the atomic formulas, but
it would assume value 0 or 1. Something similar happens in Makinson pivotal
assumption consequence, also if the belief set is the same that we have defined
earlier, because a two valued logic is there considered. For completeness of
exposition we state these theorems that are proved in [2] and [14].

Theorem 2.1. For any context Γ and a formula A, such that A is not
contradictory with the set B, J

∨
Γ ∨ AKB ≥ JΓKB.

Theorem 2.2 (Strong cut elimination of GS4B). The cut rule is redundant
when added to GS4B.

Theorem 2.3 (Uniqueness of axiomatization in GS4B). For any cluster of
axioms in the set of beliefs B the axiomatization is unique.
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3 Fractional semantics, Lockean Thesis and

the paradox of Lottery

An interesting application of fractional semantics for classical logic, as stated
in the introduction, can be found in the solution of a traditional problem:
the Lottery Paradox. The Lottery Paradox is closely related to the Lockean
Thesis, which defines how classical logic aligns with beliefs.

In brief, the Lockean Thesis asserts that an agent can select a number
within the interval [0,1] for the semantic interpretation of a formula that
works as a threshold for truthfulness. This threshold imposes a level above
which an agent considers a certain proposition or set of propositions as true.
For example, if an agent assigns a threshold value of 0.9, any sentence with
a value greater than 0.9 will be considered as true as a tautology, while a
value less than 0.9 will be regarded as false. The term Lockean thesis does
not refer to Locke himself proposing it, but to his discussion of probability
in An Essay Concerning Human Understanding:

But another Man who never took the pains to observe the Demon-
stration, hearing a Mathematician, a Man of credit, affirm the
three Angles of a Triangle, to be equal to two right ones, assents
to it: i.e. receives it for true.2

Beliefs are related to the level of assent that one agent can give to another
and so to those beliefs that are not 100% true, but in which the agent still
has a high degree of confidence in them.

Being that which [the probability] makes us presume things to be
true, before we know them to be so.3

Here probability is treated as the level of assent in a certain proposition,
in fact the renewed version of the Lockean Thesis is formulated as it follows
in [3]:

It is epistemically rational for us to believe a proposition just
in case it is epistemically rational for us to have a sufficiently high
degree of confidence in it, sufficiently high to make our attitude
towards it one of belief.

2John Locke, An essay concerning human understanding (1690) 4th book, chapter XV,
§1

3ivi. 4th book, chapter XV, §3
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The Lockean Thesis has many important positive aspects. For instance,
it implies that even a logically ideal agent whose degrees of confidence satisfy
the axioms of probability theory can rationally believe each of a large body
of propositions that are jointly inconsistent. This can be beneficial in situa-
tions where the agent has incomplete information or where there are various
sources of uncertainty.

However, as we will see, beliefs under the Lockean Thesis are not closed
under conjunction because inconsistent beliefs with varying degrees of con-
fidence are possible. This means that an agent can simultaneously hold
contradictory beliefs with different levels of confidence. One criticism of the
Lockean Thesis is that it does not provide clear guidance on how to select
the threshold. Determining which propositions an agent considers to be true
or false is crucial, and the threshold can also affect the coherence and con-
sistency of an agent’s beliefs. However, the Lockean Thesis does not specify
how an agent should select the threshold, and some argue that it can seem
arbitrary.

Despite its strengths, the Lockean Thesis faces a significant challenge in
the form of the Lottery Paradox. The paradox can appear straightforward
at first glance, but it comes into conflict with the Lockean Thesis.

The Lottery Paradox Let’s consider a fair 1000-ticket lottery that has
only one winning ticket. A perfectly rational agent knows that each ticket has
a probability of 999/1000 of not winning. Thus, it is rational for the agent to
accept that each ticket will not win because this probability is greater than
her Lockean threshold. This reasoning can be extended to every other ticket
in the lottery, leading to the conclusion that somehow every ticket will not
be the winning ticket. However, the lottery is fair, so the conjunction of all
these statements has to be false, rather than true as it appears.

This seemingly simple paradox highlights an interesting problem that can
be formalized in modal logic through the Barcan formula (BF). The BF is
problematic when considered with the lottery paradox, whereas the converse
Barcan formula (CBF) is not problematic.

∀x□F (x) → □∀xF (x) (BF)

□∀xF (x) → ∀x□F (x) (CBF)

The converse Barcan formula is not problematic in this case, as it simply
states that if it is necessary for all x to have the property F , then each
individual x must have the property F . Therefore, if it is necessary for every
ticket to be a losing one, then each individual ticket must be a losing one.
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However, the Barcan formula itself presents a problem in the case of the
lottery paradox. It states that if every x is necessarily F , then it is necessary
that every x is F . In the context of the lottery paradox, if it is necessary that
each individual ticket is a losing one, then it is necessary that every ticket is
a losing one. This leads to a contradiction: each individual ticket considered
alone is a losing ticket, but the conjunction of all losing tickets couldn’t be
true, as there must be at least one winning ticket.

One proposed solution to this problem, as discussed in sources such as [8]
and [11], is to reject the closure of beliefs under conjunction. This is a strong
thesis, as it implies that inconsistent beliefs can be rational. The authors
propose that this is due to the fact that beliefs are not completely certain
and can change over time, allowing for the possibility of holding multiple
inconsistent beliefs simultaneously.

However, it may be desirable to maintain belief closure under conjunction.
Through Fractional Semantics, it is possible to achieve this while using clas-
sical logic. To apply this approach to the lottery paradox, we can represent
each ticket as a proposition, denoting whether or not it is the winning ticket.
Let pn represent the proposition that ticket n will win, where 1 ≤ n ≤ 1000,
and let pi represent the winning ticket.

To simplify the problem, but without loss of generality, we can assume
that the first and last tickets are not winning tickets and enumerate the
tickets as follows:

p1, . . . , pi−1, pi, pi+1, . . . , p1000

We can then consider the negations of these propositions, p1, . . . , pi, . . . , p1000,
and represent them in a tree.

By using the Fractional Semantics expansion presented in section 2, we
can assign a truth value chosen between 0 and 1 to each proposition, indi-
cating whether the proposition is a belief or not. In this case, the value of
each non-winning ticket will be 1, and the value of the winning ticket will be
0, because pi is false, i.e., that pi will win. This system preserves classical
logic and allows us to maintain belief closure under conjunction while also
resolving the paradox.
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1
1

B
p1 . . . 1

1

B
pi−1

i−1

i−1

B
p1 ∧ · · · ∧ pi−1 1

0

B
pi

i

i−1

B
p1 ∧ · · · ∧ pi−1 ∧ pi 1

1

B
pi+1

i+1

i

B
p1 ∧ · · · ∧ pi−1 ∧ pi ∧ pi+1 . . . 1

1

B
p1000

...

1000
999

B
p1 ∧ · · · ∧ pi−1 ∧ pi ∧ pi+1 ∧ · · · ∧ p1000

Fractional Semantics deals perfectly with this paradox, providing a very
simple solution to this problem. In fact it is easy to see that in Fractional
Semantics it is not useful to have a threshold, because in every moment is
possible to control the value of a proposition and also the history of how
that value becomes itself thanks to the proof tree. The final value will be
999/1000 and means that 999 parts of the conjunction are true out of the
1000 joints and this coheres with the fact that one ticket must be the winning
one.

Fractional semantics and probability Must be stressed here that the
fractional semantics value is not a probabilistic one, in fact the probabil-
ity measure of the conjunction is made by the conditionalization formula as
pointed out in [7]. In this formalism P indicates the probability, (P(p1)|P(p2))
indicates the probability that the event p2 happens once p1 happened. This
is called conditionalization because it is the probability that a certain event
happens if another happened, conditioning the final probability and it is
calculated by the following formula.

P(p1 ∧ p2) = P(p1) · (P(p1)|P(p2))

This means that, once p1 is realized, also p2 realizes, so:

P(p1 ∧ p2) =
999

1000
· 998
999

=
998

1000

The meaning of the fractional semantics value is that the conjunction is
true for 999 of the joints and false for only one of them. Where the probability
or classical logic assigns value 0, fractional semantics helps us to understand
that, also if the final conjunction results false in classical logic, actually all
but one of the propositions are true and this result is not explicit in classical
framework.
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4 Conclusions

The aim of this research is to establish a connection between logic and the real
world while maintaining consistency and decidability. Specifically, we focus
on addressing the Lottery Paradox, a problem that has troubled philosophers
and logicians.

The traditional logic approach fails to capture the nuances of truthfulness
and falsity that are present in the real world. In contrast, Fractional Seman-
tics is capable of making distinctions between various levels of contradiction,
allowing for a more nuanced approach to proof theory while retaining rigor.

We introduce the system GS4B, which combines beliefs and logical ax-
ioms, highlighting the importance of considering both together. Fractional
Semantics offers a helpful framework to reason about uncertainty, which is
inherent in beliefs. Our research shows that Fractional Semantics provides a
solution to the Lottery Paradox, a seemingly simple problem with a complex
solution.

It’s important to note that fractional semantics behaves differently from
classical interpretation and probability. By highlighting the differences be-
tween these approaches, we can explore how they might work together to
provide a more refined understanding of logical derivations that involve be-
liefs. Overall, this research offers a significant contribution to the field of
logic by demonstrating the potential of Fractional Semantics in bridging the
gap between theory and practice.

Further researches The current implementation of fractional semantics
has already shown promising results, but there is potential for further ex-
pansion. One such area of exploration is the consideration of restrictions
on the set of beliefs as Makinson does in [12]. Fractional Semantics could
be applied to non-monotonic logics or non-classical logics, offering a more
nuanced approach to reasoning with uncertain or incomplete information.

In our investigation of the Lottery Paradox, we observed that the use
of fractional semantics led to richer insights than probability theory alone.
By analyzing the values of true and false conjunct propositions, we gained
a deeper understanding of the paradox. However, we must also acknowl-
edge that there is still work to be done to integrate probability, Fractional
Semantics, and Belief Revision.

In particular, there is a need to develop methods that allow these ap-
proaches to work together seamlessly. By doing so, we can refine our un-
derstanding of how beliefs and uncertainty impact logical derivations. Ul-
timately, this would provide a more comprehensive and nuanced framework
for reasoning about complex problems in the real world.
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Overall, the potential of Fractional Semantics to enhance our understand-
ing of uncertain or incomplete information is significant. With further explo-
ration and development, it has the potential to transform how we approach
logical reasoning and decision making in a wide range of applications.
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