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1 Introduction
The aim of this contribution is to examine one of the potential ap-
plications of fractional semantics for classical logic, which was first
introduced in [12]. Fractional semantics for classical logic is a multi-
valued semantics that is governed by pure proof-theoretic consider-
ations, with truth-values being the rational numbers in the closed
interval [0,1]. The primary difference between classical Boolean inter-
pretation and fractional semantics lies in the breaking of symmetry
between classical tautologies and contradictions. Fractional semantics
can assign values that differ from 0 to both non-logical axioms and
contradictions, and can be seen as a way of determining how close a
given proposition is to being a tautology or a contradiction.

To allow for a fractional interpretation of its formulas, fractional
semantics requires an appropriate proof-theoretic platform, namely a
decidable logic L that can be displayed in a sequent system S (or its
variants) that meets three conditions: bilateralism, invertibility, and
stability.

Fractional semantics is obtained by focusing on the axiomatic
structure of proofs expressed in Kleene’s one-side sequent system GS4
[9, 16]. The system has the following rules:
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(ax.)
⊢ Γ, p, p

⊢ Γ, A, B
(∨)

⊢ Γ, A ∨ B

⊢ Γ, A ⊢ Γ, B
(∧)

⊢ Γ, A ∧ B

There is not a rule governing negation as it is inductively defined by
different atomic formulas p and p, where p indicates the negation of
p. The interpretation of a formula is the result of the ratio between
the number of identity top-sequents (∆, p, p) out of the total num-
ber of top-sequents occurring in any of its proofs. Weakening and
contraction are dropped while cut rule has the form:

⊢ Γ, p ⊢ p, ∆
(cut)

⊢ Γ, ∆

In order to give a fractional interpretation a counterpart is needed,
namely GS4, that is the GS4 calculus maximally extended:

Definition 1.1 (GS4). GS4 is defined as GS4 calculus maximally
extended, adding the complementary axiom schema which enables
the introduction of whatsoever consistent clause ⊢ ∆. The system
GS4 is deductively trivial, i.e. anything can be derived in the system.

Definition 1.2 (JΓK). JΓK, for each multiset Γ, indicates the fractional
semantics value of Γ.

In GS4, for instance, ⊢ p → (q∧p) translated in GS4 as ⊢ p∨(q∧p)
is derivable:

ax.⊢ p, q
ax.

⊢ p, p
(∧)

⊢ p, q ∧ p
(∨)

⊢ p ∨ (q ∧ p)
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In classical logic the value of this sequent would be 0, but in frac-
tional semantics it is possible to assign a value based on the number
of tautological clauses out of two axioms in total, i.e., Jp ∨ (q ∧ p)K =
1/2 = 0.5, because of the presence of ⊢ p, p. Stability guarantees that
any other decomposition of this sequent will always return the value
0.5. It is possible to give a formal definition of top-sequents axioms:

Definition 1.3 (Top-sequents axioms).

top1(π) : denotes the multiset of all and only π’s top-sequents intro-
duced by an identity axiom;

top0(π) : denotes the multiset of all and only π’s top-sequents intro-
duced by a complementary axiom, in other words, those axioms
that are not tautological.

Any formula A can be interpreted as the ratio between the number
of identity top-sequents (sequents introduced by the standard axiom)
out of the total number of top-sequents.

JAK = top1(π)
top1(π) + top0(π)

Example 1.1. Let’s take another example to clarify the process.
Let’s decompose the expression ⊢ (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t).

(ax.)
⊢ p, q

(∨)
⊢ p ∨ q

(ax.)
⊢ p, p

(∨)
⊢ p ∨ p

(∧)
⊢ (p ∨ q) ∧ (p ∨ p)

(ax.)
⊢ r

(ax.)
⊢ t (∧)

⊢ (r ∧ t)
(∧)

⊢ (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

This proof contains one identity axiom out of four axioms in total and
this means that:

J(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)K = 1
4 = 0.25

The final value of the sequent A will be 1/4 and it is the same for
every decomposition of the considered sequent. Fractional semantics
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is able to keep trace of the number of contradictions out of the total
number of axioms. It is possible to define the fractional semantics in
terms of a multi-valued logics, made by this definition:

Definition 1.4 (Top-sequents). Top-sequents represent the number
of the leaves of the proof as defined in Definition 1.3 and J∨ΓK repre-
sents the value assigned to the multiset Γ where only ∨−applications
appear.

top1(π) : let’s call this m

top0(π) : let’s call this n

J∨ΓK is m
n ∈ [0, 1]

From this definition it is possible to give general rules:

(ax.)

1
1 Γ, p, p

(ax.)

1
0 ∆

n
m Γ, A, B

(∨)
n
m Γ, A ∨ B

n1
m1 Γ, A n2

m2 Γ, B
(∧)

n1+n2

m1+m2 Γ, A ∧ B

This method will permit to keep track of the value at every stage of
the proof.

Example 1.2. Let’s take the same sequent considered before in ex-
ample 1.1, but now using this decorated derivation.
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(ax.)

1
0

p, q
(∨)

1
0

p ∨ q

(ax.)

1
1

p, p
(∨)

1
1

p ∨ p
(∧)

2
1 (p ∨ q) ∧ (p ∨ p)

(ax.)

1
0

r
(ax.)

1
0

t
(∧)

2
0 (r ∧ t)

(∧)

4
1 (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

The main difference between Example 1.1 and 1.2 is that in 1.2
is possible to read the fractional semantics value every time a new
rule is introduced. For example the fractional semantics value of ⊢
(p ∨ q) ∧ (p ∨ p) will be 1/2 = 0.5 as it’s easily noticeable in the proof.

2 Framing beliefs into fractional semantics
Now that the general framework is presented, it is possible to see how
to consider beliefs in the fractional semantics for classical logic. The
idea is simple: a set of axioms, let’s say B, that are considered true
by an agent, is added to the system and every proposition in it is
considered as true as tautologies. The philosophical idea behind this
process is that an agent usually considers true their own beliefs.

Beliefs would be considered as deductively closed: this means that
every deduction made using true beliefs will be considered true and
this also means that the agent is a deductively ideal one. It is in-
teresting to see what happens if the fractional semantics is provided
with a system that is able to manage these new axioms, because it
will be possible to obtain values greater than the ones that fractional
semantics usually permits.

The idea for this kind of expansion was born thanks to the first of
the three methods that Makinson used in [11] to bridge the gap be-
tween classical and non-monotonic logic, made by adding background
assumptions. This kind of method was called pivotal-assumption con-
sequence and permitted to infer more than classical logic permits
thanks to a set of axioms that are added to the premises in every
deduction.
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Fractional semantics for classical logic updated with a set of new
beliefs is different from pivotal-assumption consequence because of
two main reasons. The first one is that Makinson used a classical two-
valued semantics, whereas fractional semantics is a multi-valued in-
terpretation. On the one hand pivotal assumption consequence would
assign the value 0 if at least one of the axioms is neither a proper
axiom nor a belief, on the other hand fractional semantics is provided
by a system able to assign values greater than 0 when one of the top
sequents is a tautology or a belief. The second reason is that, although
both of them were born thanks to syntactical techniques, Makinson
used an Hilbert-style approach, while fractional semantics uses the
Gentzen-style one.

In order to add beliefs to the system, they must be atomic, if they
are not, they must be decomposed, as it will be possible to see better.

Definition 2.1 (GS4B). Let GS4 as defined earlier, GS4B is defined
as GS4 with a set of new axioms, namely B = b1, . . . , bn, that repre-
sents a non-contradictory set of beliefs of an agent. Each bi (1 ≤ i ≤ n)
must be atomic.

Definition 2.2 (⊢B). If ⊢ is the closure relation of classical logic, ⊢B

is defined as the closure relation of GS4B.

Makinson [11] pointed out the problems arising when new axioms
are added to the system. In fact, substitution is no longer acceptable
when the system has the possibility to manage new non-logical axioms.
The same result, even if it is not cited by Makinson, is due to the fact
that classical logic is a Post-complete system and this means that,
once a nontautological formula is added to the system, the new system
will be inconsistent, unless structurality is dropped. The system loses
the structurality because structurality and consistency are mutually
excluding properties in classical logic with extra-logical axioms [13].
In the Makinson’s formulation:

Theorem 2.1. There is no supra-classical closure relation in the
same language as classical ⊢ that is closed under substitution, ex-
cept for ⊢ itself and the total relation i.e. the relation that relates
every possible premises to every possible conclusion.
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Proof. See [11].

Remark 2.1. From a conceptual viewpoint here is more fruitful to see
why substitution is no longer acceptable into the system throughout an
example. For instance let’s consider A = p ∧ q. In order to add that
we have to decompose it:

⊢B p ⊢B q (∧)⊢B p ∧ q

Thus let’s add the two clauses p and q to the set of beliefs. In
classical logic it is possible to substitute p ∧ q with a different clause,
for example r and obtain ⊢B r, but r is not one of the clauses added
to the system and this means that JrKB = 0 while JpKB = JqKB = 1 .
It’s even easier to understand it if the meaning of belief is analyzed.
In everyday reasoning it is not possible to substitute beliefs with other
beliefs at will and this is why substitution is not acceptable in the
system.

Now it’s possible to go further into the formalization of the system:
let’s define the top sequent made from beliefs added to the system.

Definition 2.3. topb(π) : denotes the multiset of all and only π’s
top-sequents introduced by a belief.

The new way to calculate the value of a sequent will be:

JAKB = topb(π) + top1(π)
topb(π) + top1(π) + top0(π)

Example 2.1. Let’s see an example taking the same sequent seen in
example 1.1, but adding now the belief ⊢B (p ∨ q) ∧ u. The first thing
to do, in order to add the belief, is to decompose it and add that to
the belief set.

(b1)
⊢B p, q

(∨)
⊢B p ∨ q

(b2)
⊢B u

(∧)
⊢B (p ∨ q) ∧ u
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From this it is possible to add the two beliefs b1 = p, q and b2 = u to
the belief set.

Let’s take the same decomposition seen in example 1.1: it is pos-
sible to see where a belief is added to the system, namely b1, because
u doesn’t appear in the sequent.

(b1)
⊢B p, q

(∨)
⊢B p ∨ q

(ax.)
⊢B p, p

(∨)
⊢B p ∨ p

(∧)
⊢B (p ∨ q) ∧ (p ∨ p)

(ax.)
⊢B r

(ax.)
⊢B t

(∧)
⊢B r ∧ t

(∧)
⊢B (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

This proof contains one identity axiom, one belief and two comple-
mentary axioms, so JAKB is:

JAKB = topb(π) + top1(π)
topb(π) + top1(π) + top0(π) = 1 + 1

1 + 1 + 2 = 2
4 = 0.5

Like in example 1.2, it is possible to see the same tree with multi
valued system, adding a new rule:

(bi)

1
1

B
B

Where B denote the set of belief, B = b1, . . . , bn.

Example 2.2. Now it’s possible to see Example 2.1 with the multi
valued system.

(b1)

1
1

B
p, q

(∨)

1
1

B
p ∨ q

(ax.)

1
1

B
p, p

(∨)

1
1

B
p ∨ p

(∧)

2
2

B
(p ∨ q) ∧ (p ∨ p)

(ax.)

1
0

B
r

(ax.)

1
0

B
t

(∧)

2
0

B
(r ∧ t)

(∧)

4
2

B
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)
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The only difference between Example 1.2 and 2.2 can be seen in the
substitution with the value 1 instead of the 0 for the top axiom ⊢ p, q.
In Figure 1 it is possible to see how the value of A changed when was
considered in the fractional semantics framework without beliefs and
when one belief is added.

0

⊥

0.25

JAK

0.5

JAKB

1

Certainty (GS4B)

Figure 1: The values of JAK and JAKB.

It is worth noting that if this sequent was considered in classical
logic, it would have different values changing by the value of the atomic
formulas, but it would assume value 0 or 1. Something similar happens
in Makinson pivotal assumption consequence, also if the belief set is
the same that we have defined earlier, because a two valued logic is
there considered.

2.1 Strong cut elimination

The last section pointed out that the agent is an ideal one and that
they are aware of every deduction between beliefs. This means that
the belief set is deductively closed: nothing that was not already in
the set can be derived. In order to have a deductively closed belief
set it is important that every combination of sentences, when it is
possible, must be closed under cut and the new sentences obtained in
this way will be added to the belief set.

In order to eliminate cut from GS4B the method is taken from
[13], but it is simplified because of the nature of one-sided sequents.
The method is the following:

1. turn each new belief bi added to the system in a conjunctive
form: cnf(bi) = b1 ∧ · · · ∧ bn and add to the system each of the
atomic formulas;

2. for each disjunctive formula, let’s remove the application of ∨-
rule: b1 ∨ · · · ∨ bn ≡ b1, . . . , bn;
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3. let’s remove copies of the same sequent;

4. let’s remove identity sequents of the form ⊢ Γ, p, p;

5. let’s close under cut the belief set and add to the system the
new formulas obtained in this way.

It is easy to show why the last step is so important. Suppose
that an agent has a new belief: A = (p ∧ (t ∨ q)) ∨ (t ∧ (t ∨ q)).
The first thing to do in order to add that belief is to transform A
in a conjunctive form: it is easy to show that it is equivalent to ⊢
(p ∨ t) ∧ (t ∨ q) ∧ (t ∨ t ∨ q) ∧ (t ∨ q). Let’s decompose it in a set of
clauses: ⊢ p, t, ⊢ t, q, ⊢ t, t, q, ⊢ t, q and remove one of the copies of
⊢ t, q and the axiom ⊢ t, t, q. By the method presented earlier the
agent has to add (p ∨ t) and (t ∨ q) to the system, but these beliefs
are not cut free. To let them be cut free, it is necessary to close them
under the cut.

⊢ p, t ⊢ t, q
(cut)

⊢ p, q

From the last point of the method presented earlier, it is needed to add
not only ⊢ p, t and ⊢ t, q, but also ⊢ p, q. Let’s see why: J(p∨t)∧(t∨q)K
has value 1 if B = {(p, t); (t, q)}

1
1

B
p, t

(∨)

1
1

B
p ∨ t

1
1

B
t, q

(∨)

1
1

B
t ∨ q

(∧)

2
2

B
(p ∨ t) ∧ (t ∨ q)

But what about (p ∨ t) ∧ (t ∨ q) ∧ (p ∨ q)?

Remark 2.2. (p ∨ t) ∧ (t ∨ q) ∧ (p ∨ q) is classically equivalent to
(p∨ t)∧ (t∨q), this means that they must have the same value because
of stability, i.e. J(p ∨ t) ∧ (t ∨ q)K = J(p ∨ t) ∧ (t ∨ q) ∧ (t ∨ q)K.
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What happens if B = {(p, t); (t, q)} is considered, instead of B =
{(p, t); (t, q), (p, q)}, obtained by adding also the belief closed under
cut? Let’s consider the decomposition of (p∨t)∧(t∨q)∧(p∨q) within
the set B = {(p, t); (t, q)}.

1
1

B
p, t

(∨)

1
1

B
p ∨ t

1
1

B
t, q

(∨)

1
1

B
t ∨ q

(∧)

2
2

B
(p ∨ t) ∧ (t ∨ q)

1
0

B
p, q

(∨)

1
0

B
p ∨ q

(∧)

3
2

B
(p ∨ t) ∧ (t ∨ q) ∧ (p ∨ q)

This way a different value for the sequent is obtained and it must have
the same value of ⊢ (p ∨ t) ∧ (t ∨ q).

This means that it is important to pay attention to frame not only
the axioms obtained by the decomposition of the sequent, but also ev-
ery formula closed under cut. In fact if the set B = {(p, t); (t, q), (p, q)}
is considered, the original value is restored.

1
1

B
p, t

(∨)

1
1

B
p ∨ t

1
1

B
t, q

(∨)

1
1

B
t ∨ q

(∧)

2
2

B
(p ∨ t) ∧ (t ∨ q)

1
1

B
p, q

(∨)

1
1

B
p ∨ q

(∧)

3
3

B
(p ∨ t) ∧ (t ∨ q) ∧ (p ∨ q)

Thus the sequents have the same value:

J(p ∨ t) ∧ (t ∨ q)KB = J(p ∨ t) ∧ (t ∨ q) ∧ (p ∨ q)KB = 1

As it was showed, the cut is really important for a complete set of
beliefs, but it is also necessary to see how the cut can be eliminated
from the calculus.
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Elimination of cut The elimination of cut in presence of proper
axioms was firstly proposed by Girard [4], as noted by Avron [1], up-
grading the Gentzen’s standard cut elimination algorithm. The pro-
cedure here proposed, i.e., the decomposition of the formula, the add
to the system and the cut of the formula to obtain all the derivations,
owes a lot to the one presented in [13]. In the article, in fact, is proved
that, for any cluster of extra-logical assumptions, there exists exactly
one axiomatic extension of classical propositional logic that admits
cut elimination. First of all it is possible to see that weakening it is
admissible in GS4B.

Theorem 2.2 (Weakening admissibility in GS4B). For two atomic
formulas ⊢B Γ and ⊢B ∆, J

∨
Γ ∨

∨
∆KB ≥ J

∨
ΓKB.

Proof. To prove this is sufficient to consider a transformation of ⊢B.
In fact if B = b1, . . . bn, then ⊢B Γ is equal to ⊢ Γ, b1, . . . bn with the
classical closure as pointed out in [11]1.

It is possible to generalize this result for any context:

Theorem 2.3. For any context Γ and a formula A, such that A is
not contradictory with the set B, J

∨
Γ ∨ AKB ≥ JΓKB.

Proof. By induction on the complexity of the formula A.

The proof shows that this system is totally monotonic, also if it
could seem counterintuitive for a set of belief., because maybe if an
agent has a belief p it is strange to believe also p ∧ q, but this is due
to the fact that this work is based on a classical framework and so the
fractional value of JpKB assumes the same of Jp ∧ qKB.

Theorem 2.4 (Strong cut elimination of GS4B). The cut rule is
redundant when added to GS4B.

Proof. Similar to the one proposed in [13].

1In the text the two sided version of this transformation was used, so ⊢B Γ
becomes b1, . . . , bn ⊢ Γ, but here because of the choice to use GS4 as main system,
it is used the one-sided classically equivalent version ⊢ Γ, b1, . . . , bn.



Framing beliefs

The set of beliefs can be “completed” through cut or without that.
This means that GS4B is a cut-free system, because it is an axiomatic
extension of classical logic. By the way, the use of cut can alter
the fractional semantics value as shown in [12]. Thanks to theorem
2.4 the algorithm presented in section 2.1 can be transformed in an
algorithm without the presence of cut. As a corollary of the strong
cut elimination it can be obtained:

Theorem 2.5 (Uniqueness of axiomatization in GS4B). For any clus-
ter of axioms in the set of beliefs B the axiomatization is unique.

Proof. See [13].

3 Conclusions

The present research may be considered as an attempt to create a
bridge between logic and the real world, nonetheless retaining consis-
tency and decidability.

The main difference between classical approach and the fractional
semantics one is either philosophical and technical. By a technical
point of view is possible to distinguish between different levels of con-
tradiction. Fractional semantics is able to distinguish between what’s
inside truthfulness and falsity, without losing the rigorous approach to
proof theory, proving the cut elimination and the others fundamental
properties.

The system GS4B is able to consider beliefs and logical axioms
together. The fractional system, in fact, does not have the symmetry
between tautologies and contradictions and it is helpful to talk about
something that is uncertain such as beliefs. We have shown that
fractional semantics could be useful to see how to solve a simple, but
tricky problem such as the Lottery Paradox.

It’s interesting to see how fractional semantics behaves differently
compared to classical interpretation and probability. It was impor-
tant to point out the difference between probability and fractional
semantics, also because it will not be strange that fractional seman-
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tics and probability will be able to work together to better define
logical derivations involving beliefs.

Further researches This kind of implementation could be expanded,
for example considering restrictions of the set of beliefs, i.e., applying
fractional semantics to non monotonic logics or non classical logics in
general.

In the Paradox of lottery it was interesting to notice that these
different results, interpreted together, can be richer in content than
probability itself, letting know, through a value, the number of true
and false conjuncts propositions. Despite this, a way to let probability,
fractional semantics and maybe belief revision work together must be
implemented yet.
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